KEFİRİN İNSANLAR ÜZERİNDEKİ İMMÜNOMODÜLATÖR ETKİLERİNİN ARAŞTIRILMASI

Dr. Nurettin GÖNÜLATEŞ

MİKROBİYOLOJİ VE KLİNİK MİKROBİYOLOJİ
ANABİLİM DALI

TEZ DANİŞMANI
Doç. Dr. Ali K. ADİLOĞLU

Bu tez Süleyman Demirel Üniversitesi Araştırma Fonu tarafından 1568-TU-07 proje numarası ile desteklenmiştir

ISPARTA - 2008
ÖNSÖZ

<table>
<thead>
<tr>
<th>Acronim</th>
<th>İngilizce Açıklaması</th>
<th>Türkçeleştirme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
<td>İnmunoglobulin</td>
</tr>
<tr>
<td>Muc 2</td>
<td>Mucin 2</td>
<td>Müsin 2</td>
</tr>
<tr>
<td>Rho</td>
<td>Guanosin difosfataz</td>
<td>Guanozin difosfotaz</td>
</tr>
<tr>
<td>Cox 2</td>
<td>Cyclooxygenase</td>
<td>Siklooksijenaz 2</td>
</tr>
<tr>
<td>PGE2</td>
<td>Prostaglandin E2</td>
<td>Prostoglandin E2</td>
</tr>
<tr>
<td>NF-B</td>
<td>Nuclear factor kappa B</td>
<td>Nükleer faktör-kappa B</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator Protein 1</td>
<td>Aktivatör Protein 1</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisomal proliferator receptor</td>
<td>Peroksizomal proliferatörle aktive reseptör</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
<td>Tümör nekroze edici faktör</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
<td>İnterferon</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunoassay</td>
<td>Enzim Bağlı İmmün Assay</td>
</tr>
<tr>
<td>NK</td>
<td>Natural Killer cell (Natural Kiler cell)</td>
<td>Doğal öldürücü hücre</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
<td>Deoksiribonükkleik asit</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
<td>Ribonükleik asit</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility factor (Major histocompatibility factor)</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
<td>Cluster of differantation</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescent isothiocyanate</td>
<td>Floresan izotiyosiyonat</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
<td>Pikoeritrin</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetraacetic acid</td>
<td>Etilen Daimin Tetraasetik asit</td>
</tr>
<tr>
<td>FACS</td>
<td>Facial Action Coding System</td>
<td>Facial Action Coding System</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescent in-situ hybridization</td>
<td>Floresan in-situ hibridizasyon</td>
</tr>
<tr>
<td>Percp</td>
<td>Peridinin Chlorophyll Protein</td>
<td>Perinidin Chlorophyll Protein</td>
</tr>
<tr>
<td>BD</td>
<td>Becton Dickinson</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen Presenting Cell (Antigen Presenting Cell)</td>
<td>Antigen Presenting Cell (Antigen sunucu hücre)</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
<td>İnterlökin</td>
</tr>
<tr>
<td>TCR</td>
<td>T cell receptor</td>
<td>T cell receptor</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
<td>T helper</td>
</tr>
<tr>
<td>T reg</td>
<td>T regulator</td>
<td>T regulatuar</td>
</tr>
</tbody>
</table>
İÇİNDEKİLER

ÖNSÖZ.. i
KISALTMALAR ... ii
İÇİNDEKİLER .. iii
TABLOLAR LİTESİ .. v
1. GİRİŞ ... 1
2. GENEL BİLGİLER ... 3
 2.1. Probiyotiklerin Tanımı ve Tarihçesi ... 3
 2.2. Probiyotiklere Bakış ve Bunların İnsanlarla Etkileşimi 4
 2.3. Probiyotik Mikroorganizmaların Özellikleri .. 5
 2.3.1. Probiyotik Mikroorganizmalarında Aranan Özellikler 6
 2.3.2. Probiyotiklerin Etki Mekanizmaları .. 7
 2.4. Probiyotik Mikroorganizmalar ... 8
 2.4.1. Bifidobacterium Genusu ... 8
 2.4.2. Lactobacillaceae Familyası ... 9
 2.4.3. Saccharomyces Türleri ... 9
 2.4.4. Streptococcaceae Familyası ... 10
 2.4.5. Kefirin Tanımı .. 10
 2.5. Laktik Asit Bakterilerinin Bağışıklık Üzerine Etkileri 11
 2.6. Akım Sitometrisi (Flow Cytometry) ... 12
 2.6.1. Akım Sitometrisi ile Hücrelerin Analizi ... 13
 2.6.2. Akım Sitometrisi Analizi .. 14
 2.7. CD Belirteçlerinin Özellikleri ... 14
 2.8. Bağışıklık Sistemi ... 16
 2.8.1. Doğal Bağışıklık Sistemi ... 16
 2.8.2. Edinsel Bağışıklık Sistemi ... 17
 2.8.3. Bağışıklık Sisteminin Organları .. 17
 2.8.3.1. Merkezî Lenfoit Organlar .. 17
 2.8.3.1.1. Timus .. 17
 2.8.3.1.2. Kemik İliği ... 18
 2.8.3.2. Çevresel Lenfoit Organlar ... 18
 2.8.3.2.1. Plazma Hücreleri ... 18
2.8.3.2.2. Dendritik Hücreler ... 18
2.8.3.3. Natural Killer Hücreler: (Doğal Öldürücü Hücreler-NK) 18
2.8.3.4. Granülositler ... 20
2.8.3.5. Nötrofiller ... 20
2.8.3.6. Bazofiller .. 20
2.8.3.7. Eozinofiller .. 20
2.8.3.8. Mukozal İlişkili Lenfot Doku (MALT) 20
2.8.4. Lenfositler .. 20
2.8.4.1. B Lenfositler ... 21
2.8.4.2. T Lenfositler ... 22
2.8.4.2.1. T Lenfosit Hücre Algacı ... 25
2.8.4.2.2. Yardımcı T Lenfositler - CD4^T Lenfositler: T Helper
Lenfositler (Th) .. 25
2.8.4.2.2.1. Th1 Lenfositler .. 26
2.8.4.2.2.2. Th2 Lenfositler .. 26
2.8.4.2.2.3. Treg Hücreleri (Regülatör T Lenfositler) 27
2.8.4.2.2.4. Th17 Hücreler .. 27
2.8.4.2.3. Sitotoksik T Lenfositler (Tc) – CD8^T Lenfositler 27
2.8.5. Genel Bilgiler ve Çalışmanın Amacı ... 28

3. MATERYAL METOD .. 29
3.1. Manuel Lökosit Sayımı .. 30
3.2. Bağışıklık Dönemi ... 30
3.3. İstatistiksel Analiz .. 30
4. BULGULAR ... 33
5. TARTIŞMA ... 38
6. ÖZET ... 45
7. ABSTRACT ... 47
8. KAYNAKLAR .. 49
TABLOLAR LISTESİ

Tablo 1 - Ticari olarak kullanılan probiyotik suşları .. 6
Tablo 2 - Probiyotiklerin potansiyel klinik amaçları ve etkileri 10
Tablo 3 - Tam kandaki lökosit sayılarının (x10³) 0, 3, 6 ve 9. haftalardaki dağılımı...33
Tablo 4 - Nötrofil parametrelerinin ikili haftalar ve toplamdağılımı..................33
Tablo 5: Tam kandaki lenfosit yüzdelerinin 0, 3, 6 ve 9. haftalardaki dağılımı........33
Tablo 6: Tam kandaki monosit yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı....34
Tablo 7: CD3+CD56+CD158+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı..34
Tablo 8: CD3-(negatif)CD56+CD158+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı..34
Tablo 9: CD3(negatif)CD56+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı..35
Tablo 10: CD3+CD56+ hücre yüzdelerinin 0, 3, 6 ve 9. haftalardaki dağılımı......35
Tablo 11: CD3-(negatif) CD56+ NKG2a+ hücre yüzdelerinin 0, 3, 6 ve 9. haftalardaki dağılımı..35
Tablo 12: CD3+ CD56+ NKG2a+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı..36
Tablo 13: CD3+ hücre yüzdelerinin 0, 3, 6 ve 9. haftalardaki dağılımı..................36
Tablo 14: CD3+CD4+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı......36
Tablo 15: CD3+CD8+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı......37
Tablo 16: CD3-(negatif) CD19+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı..37
1. GİRİŞ

Probiyotikler, canlı mikrobiyal besin içeriğini olarak tanımlanabilirler. Belirli miktarda alındıklarında tüketici ve mikroorganizma kolonizasyonu, hücre adezyonu ve invazyonları önlemler ve ayrıca direkt antimikrobiyal aktiviteleri ve konak bağışıklık cevabını ayarlamaları sağlar.

Probiyotiklerin klinik yararlılıkları açısından en güçlü etkileri arasında laクト intoleransı semptomlarının önlenmesi, akut diarein tedavisi, antibiyotik ilişkili gastrointestinal yan etkilerin azaltılması, önlenmesi ve alerjik bulguların tedavisi sayılabilir.

Klinik çalışmalar göstermektedir ki, probiyotikler, rota virüsü diareyi, antibiyotik ilişkili diareyi, Closidium difficile diareisi ve turist diareesi de içeren bir takım diare türü rahatsızlıklarının tedavisinde kullanılabılır.
 Çağımızın fiziksel ve ruhsal stresleri bağımsız sistemimizi olumsuz yönde etkilemektedir. Beslenme yetersizlikleri, giderek artan ömür sonucu yaşlılık ve geriatrik hastalıklar, günlük artan iş yoğunluğu ve buna ek olarak gelecekteki kaygı, insanları enfeksiyon hastalıklarına, kansere, depresyona ve otoimmün rahatsızlıklarına maddi birİşte biz de bu çalışmamızda Kafkasya’nın dağlık kesimlerinde yaşamış kabilelerin sağlık işaretleri olarak gördükleri bir probiyotik türü olan kefine bağımsız sistemimiz üzerindeki immünomodülatör etkilerini gözlemlemeyi amaçladık.
2. GENEL BİLGİLER

2.1. Probiyotiklerin Tanımı ve Tarihçesi

Bakterilerin vücudumuza zararlı ve hastalıklara neden olduğu kansı uzun yıllar kabul görmüşdür. Oysa günümüzde sayıları giderek artan bilimsel araştırma sonuçları canlı mikroorganizmaların bazı hastalıkların tedavisinde, hatta önlenmesinde kullanılabileceğine işaret etmektedir. Genelde “doğal” olan kullanım ve tüketme alışkanlığının bulunması probiyotiklere olan ilgiyi arttırmıştır. Çeşitli gastrointestinal sistem hastalıklarının tedavisinde yardımcı, çocuklarda allerjik reaksiyonların ortaya çıkışı geciktirmede etkin, kadınlarda vajinal ve üriner sistem enfeksiyonlarının tedavi ve önlenmesinde yararlı olduğu ortaya konulmuştur (1–6).

Probiyotik kavram ilk kez XIX. yüzyılın başlarında Nobel ödülü sahibi Elie Metchnikoff tarafından gündeme getirilmiştir. Metchnikoff, Bulgar köylülerinin uzun yaşamalarının fazlaça fermentte süt ürünü tüketmelerine bağlı olduğunu belirtmiştir (5, 9, 14).

Taş devri insanları önemli derecede daha az tuz, yağ ve şeker tüketmeye idiler, iki kat daha fazla mineraral, 10 kat daha fazla bitkisel kaynaklı lif, 20 kattan daha fazla bitkisel antioksidan, 50 kattan daha fazla omega-3 yağ asitleri ve milyarlarca kat daha fazla canlı bakteri almaktaydılar. Tüketikleri besinlerin çoğu iyice fermentte edilmiş besinlerdi. (tahıllar, inek sütü gibi). Son zamanlarda elde edilen veriler, doğal ve işlenmiş besinlerden çoğunlukla enerji yoğunluğu yüksek işlenmiş besinlere geçişle kronik hastalıkların sıklığının arttığı konusuna dikkat çekmektedir.
Kronik hastalık sıklığının artışı ile bitkisel kaynaklı lif ve antioksidan tüketiminin azalması arasında açık bir etkileşim vardır. Kişî başına tüketilen şeker 1850 yılında yılda 0,5 kg iken, 2000 yılında yılda 50 kg’a yükselmiş durumdur (15).

2.2. Probiyotiklere Bakış ve Bunların İnsanlarla Etkileşimi

Bağırskak mukozasının alanı 200 m² olup, deri yüzeyinin 100 katıdır. Bu yüzey insan vücudunu yaklaşık olarak 10¹⁴ mikroorganizmadan ayırmaktadır. İnsanların bitkiler ve organizmalar olmaksızın yaşamalarını düşünülemez. Bu nedenle vücud yüzey ve boşlukları bir organizma tabakası ile kaplı durumdur. Kalın bağırsaklarda 1–2 kg, deride 200 gr, ağrız boşluğu, akciğerler ve vajenin her birinde 20’şer gr, burunda 10 gr, gözde 1 gr mikroorganizma vardır. İnsan vücudunda ökaryotik hücre sayısıının (10¹³) 10–20 katı prokaryotik hücre (10¹⁴) bulunmaktadır. İçerdikleri genetik materyalin büyüklüğü ise vücudun diğer kısımlarındaki genlerin 30 katıdır. Sağlıklı bireylerin bağırskaklarındaki mikroorganizma türü sayısı yaklaşık olarak 500’dür. Vücudumuza yararlı olan bu mikroorganizmalar zararlı mikroorganizmaları kontrol altında tutar, sindirim ve besin ögesi emilimine yardımcı olur (5, 11, 12, 16, 17, 18, 19).

Genel anlamda bu şöyle belirlenmiştir ki, pozitif sağlık etkilerini ortaya çıkarabilmek için günlük ürünlerdeki probiotik mikroorganizmaların canlı olmaları...

Kefir de diğer bazı fermente ürünler gibi yeterli doz ve sürede verilirse insan ve hayvan organizmalarında sağlık için katkıları olan probiyotik olarak nitelendirilen fermente bir ürün grubundadır. Bu noktadan hareketle kefir de probiyotikler arasında değerlendirilebilir.

2.3. Probiyotik Mikroorganizmaların Özellikleri

Atalarımız uzun yıllardan beri bakterileri besinlerin saklanmasında fermentasyon amaçlı ve hiç bir yan etki gözlemeksizin kullanmışlardır. Bu nedenle de, probiyotik mikroorganizmaların seçiminde atalarımızın kullandıklarına ağırlık verilmiştir. Örneğin, yoğurt böyle bir besindir; Lactobacillus ve Bifidobacterium suşları içermektedir (28, 29, 30, 31).
Tablo 1 - Ticari olarak kullanılan probiyotik suşları

<table>
<thead>
<tr>
<th>Lactobacillus suşları</th>
<th>Bifidobacterium</th>
<th>Streptococcus suşları</th>
<th>Mayalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. acidophilus</td>
<td>B. bifidum</td>
<td>Saccharomyces</td>
<td></td>
</tr>
<tr>
<td>L. casei</td>
<td>B. breve</td>
<td>boulardii</td>
<td></td>
</tr>
<tr>
<td>L. fermentu</td>
<td>B. lactis</td>
<td>S. thermophilus</td>
<td></td>
</tr>
<tr>
<td>L. gasseri</td>
<td>B. longum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. johnsonii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. lactis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. paracasei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. plantarum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. reuteri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. rhamnosus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. salivarius</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.1. Probiyotik Mikroorganizmalarda Aranan Özellikler

1. Normal insan bağırşağ kökenli olmalıdır.
2. Stabil olmalıdır, düşük pH ve safra tuzları gibi olumsuz çevre koşullarından etkilenmeden bağırıkta metabolize olmalıdır.
4. Bağırık hücrelerine tutunabilmeli ve kolonize olabilmelidir.
5. Karsinojenik ve patojenik bakterilere ters etkili olmalıdır.
6. Antimikrobiyal maddeler üretmelidir.
8. Antibiyotiklere dirençli olmalıdır. Antibiyotik'e bağlı (diyare) ortaya çıkan hastalıklarda bağırsağın mikrobiyolojik içeriğini düzeltmek amacı ile kullanabileceğinden, bağırıaktaki antibiyotiklerden etkilenmemelidir.
9. Minimum etki dozları bilinmediğinden, canlı hücrelerde büyük miktarda bulunabilmelidir.
10. Üretim ve depolama sırasında canlılığı ve aktivitelerini koruyabilmelidir.
11. Ayrıca, probiyotik bakterilerin kesinlikle patojenler ile kontamine olmaması ve patojenik özelliğe sahip olmaması gerekmektedir (32).

2.3.2. Probiyotiklerin Etki Mekanizmaları
1. Patojen mikroorganizmaların üremelerine engel olur.
2. Bağırsak pH’sını düşürür.
4. Paneth hücreleri ve epitel hücrelerinde defensin yapımını uyarır.
5. Kolonizasyonlara direnç gösterir (ekolojik nişleri kaplayarak).
7. Patojenlerin epitele tutunma ve epiteli istila etmesine engel olur.
8. MUC2’yi uyararak tutunmalarına engel olur.
10. Rho’ya bağımlı ya da bağımsız yollarla epitelin istilasını önler.
11. Epitel ve mukozanın engel oluşturma işlevini güçlendirir.
14. Engel oluşturulan kısımlarının bütünüğünü artırır.
15. Konakçının immün yanıtını değiştirir.
16. IL–10, TGF-β ve Cox2 (PGE2) ekspresyon ve salınımını artırır.
17. Salgılan IgA yapımını artırır.
18. TNF-α ve INF–γ ekspresyonunu azaltır.
20. Natural killer hücre aktivitesini artırır.
22. NF-.B ve AP–1 yolaklarını düzenler.
23. PPAR-’yi uyarır.
25. IL–10 ekspresyon ve salgılanmasını sağlar.

2.4. Probiyotik Mikroorganizmalar

2.4.1. Bifidobacterium Genusu

Actinomycetaceae familyası içinde bulunmaktadır. Bifidobacter’ler, insan ve bazı hayvanların kalın barsak, ağız ve vajina normal florasında bulunmaktadır.

Yeni doğanlar, özellikle anne sütüyle doğumdan birkaç gün sonra bifidobakterler ile kolonize olurlar. Bifidobacter’ler anne sütüyle beslenen infantların feçelerinden izole edilebilirler. Kolonda bu bakteri popülasyonunu yaş ilerleyinceye kadar rölatif olarak sabit kalırken diyet, antibiyotik kullanımı ve stres gibi faktörlerle zaman zaman değişim görülebilir. Gram pozitif, anaerob, hareketsiz,
sporsuz, morfolojik olarak farklı şekillerde görülebilirler. Adları, genellikle Y seklinde ya da bifid formda olmalarından alırsı (33).

Ancak faaliyetleri ve gelişmeleri pH 5 altı ve 8’in üstünde tamamen durur (33, 34).

2.4.2. *Lactobacillaceae* Familyası

Çok az tür veya suşun dışında hareketsizdirler. Gram pozitif reaksiyon veren bakteri, kültürlerin eskimesi ile gram negatif ve uzun zincir görünümüne değişebilmektedir. Spor oluşturmayan, anaerop veya mikroaerofil bakterilerdir. Üreme sıcaklıkları 5–55 °C arasında değişebilir. optimum üreme pH 5.5–5.8 aralığında görülmüştür.

2.4.3. *Saccharomyces* Türleri

Gram pozitif boyanma özelliği gösteren daha formında görülmektedirler. 4–8 mm boyutlarında, oval veya sferik şekilde morfolojiye sahiptirler. Askospor oluşturmaktaadırlar. Standart mantar besi yerinde 37 °C’de üremektedirler.

Karbonhidratları asimile ve fermentte etme yeteneğine sahiptirler.
2.4.4. *Streptococcaceae* Familyası

Sferik ya da oval şeklinde; tekli, ikili veya değişik uzunlukta zincir veya tetrat formunda bulunabilmektedirler. Gram pozitif, fakultatif anaerob, sitokrom oksidaz ve katalaz negatif mikroorganizmalardır. Hareketsiz, sporsuz, homoverfermantatif özelliktedirler. Süt ve süt ürünlerinde bulunur; yoğurt yapımında kullanılmaktadırlar.

Belli başlı üç genusu vardır: *Streptococcus, Leuconostoc* ve *Pediococcus* genususu (34).

Tablo 2 - Probiyotiklerin potansiyel klinik amaçları ve etkileri

<table>
<thead>
<tr>
<th>Probiyotiklerin Etkisi</th>
<th>Probiyotiklerin Mekanizması</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akut diyarenin besinsel olarak düzenlenemebilmesi</td>
<td>Barsak mikrobiyol florasinin düzenlenmesi. Rotavirüs yayım süresinin kısaltılması</td>
</tr>
<tr>
<td>Alerjik ve inflamatuar barsak hastalıklarının besinsel düzenlenmesi</td>
<td>Musin sentezinde artış, lokal ve sitemik inflamatuar cevabin, gut bariyer fonksiyonun ve mikrobiyal floranın özelliklerinin iyileştirilmesi</td>
</tr>
<tr>
<td>Enfeksiyon hastalıkları riskini azalta</td>
<td>Rotavirüse karşı IgA salgısının ve musin sentezinin artışı</td>
</tr>
<tr>
<td>Alerjik ve inflamatuar hastalıkların riskini azalta</td>
<td>Barsak bariyer fonksiyonu, antiflamatuar etki, inflamatuar molekülerinin düzenlenmesi immün sistemin gelişiminin teşvik edilmesi</td>
</tr>
</tbody>
</table>

2.4.5. Kefirin Tanımı

Kefir polisakkarit ve protein matriks içine hapsedilmiş, laktik asit bakterileri ve mayaların aktiviteleri ile oluşturulmuş fermenteli edilmiş bir süt ürünüdür. Kalitsal yüksek beslenme değerinin yanı sıra protein ve kalsiyum kaynağı olan kefir diyet olarak önem verilen ülkelerde sağlık açısından iyi olarak tanımlanan uzun süreli bir geleneksel içecek özelliğine sahiptir. Öte yandan, insan ve hayvanlardaki beslenme özelliği olarak veya kefirin ortaya çıkardığı olumlu etkilerin mekanizmaları
hâlihazırda belirgin olarak yayılmamamıştır. Rusya kaynaklı yayınlar kefir tüketiminin etkilerini açıklayan makalelerde sahip olduğu halde, bu çalışmalar batılı ülkelerde hazır olarak bulunmamaktadır(35).

2.5. Laktik Asit Bakterilerinin Bağışıklık Üzerine Etkileri

_Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium longum ve bazı bakteriyel hücre ürünleriley beraber olan süt ve yoğurt tüketiminin ve çeşitli laktik asit bakterilerinin karışımlarının İmmünoglobulin A üreten hücrelerin sayılarını, makrofaj, İmmunoglobulin G (IgG) miktarını ve antijenik uyanınlara karşı özgün antikor cevabını laktik asit bakterilerini tüketmeyen hayvanlarla karşılaştırıldıklarında artırmaktadırlar. L. casei veya L. Acidophilus ve bifidobacterium ile ferment edilmiş sütün insanlarda rota virüs aşları ve zayıflatılmış Salmonella typhimuriuma (Ty21a) karşı humoral immün cevabı güçlendirdiği gözlenmiştir (39, 40).

Kefir yoğurt ve diğer fermentte süt ürünlerinden kefir granülleri (polisakkarit bir matriks içinde bir arada tutulmuş küçük mikroorganizma kümeleri) veya granüllerden ibaret materyallerin ana kültürden{süte eklenmesiyle fermentasyona sebep olmalarıyla ayrılır (41). Yeterli bilginin olmamasına rağmen yapılan yeni çalışmalar kefirin hayvanlarda antibakteriyal, bağışıkısal ve antitümoral etkilere

2.6. Akım Sitometrisi (Flow Cytometry)

Akım sitometrisi, bir sıvı akımı içerisinde ilerleyen hücreleri büyüklüğüne ve granülaritesine bağlı olarak tek hücre seviyesinde araştırma imkanı sağlar. Akım sitometrisinde birçok teknik bir arada kullanılır. Akım sitometrisi sistemi, bilgisayar teknolojisi, optik, hidrodinamik odaklama ve elektronik alandaki teknik gelişmeler, monoklonal antikorların üretimi, sitokimyasal boyamalar ve florokrom kimyasındaki gelişmelerin birarada uygulanması ile ortaya çıkmıştır.

Akım sitometrisi; süspansiyon halindeki hücrelerde yüzey ve hücre içi belirteçlerinin tipi ve sayısının belirlenmesi, B lenfositleri ile T lenfosit alt gruplarının eldesi, lösemi ve lenfoma tiplendirilme ve sınıflandırılması, DNA ve RNA içeriğinin tesbiti, fagositoz, otoantikor tayini ve kromozom analizi gibi birçok mevzu kullanılmaktadır. Akım sitometrisiyle hücreler teker teker sayılır ve hücrelerin biyofiziksel ve biyokimyasal özelliklerinin niceleyici ölçümleri yapılır. Hücrelerin çok sayıda ve değişik parametreleri arka arkaya ölçülebilir ve hücre alt grupları olarak birbirlerinden ayırt edilebilir (54–57).
Akım sitometrisinin klinikteki önemi şöyle özetlenebilir:

1. Çok sayıda hücreyi hızla sayabilme özelliği vardır.
2. Çok az sayındaki tümöral hücreyi geniş bir hücre grubu içerisinde saptama imkânı sağlar.
3. Sorting (ayırma) mekanizması hücre alt gruplarının ayırmasına ve karışık hücre gruplarının saflaştırılmasına imkân sağlar.
4. Apopitozisin belirlenmesi, floresan in–situ hibridizasyon (FISH) tekniği ve tümör kinetikinin saptanmasında da akım sitometrisi kullanılmaktadır (54).

2.6.1. Akım Sitometri ile Hücrelerin Analizi

Direkt ve indirekt metodlar olmak üzere iki farklı immünofloresan işaretleme tekniğinden yararlanılabilir. Direkt yöntemde antikorla konjuge olmuş florokrom madde [fluorescein isothiocyanate (FITC) ve phycoerythrin (PE)...vb.] kullanılır. İndirekt metodd ise sütansiyon halindeki hücrelere ilkin işaretetsemonoklonal antikor bağlanır, bu antikorlara da işaretli monoklonal antikor bağlanır.

Direkt yöntemde kullanılan antikorun tek özellikle olması nedeniyle özgün olmayan bağlanma ihmal edilecek kadar azdır. Ancak çok düşük yoğunluğa sahip yüzey antijenlerinin gösterilememesi bir dezavantajdır. İndirekt metodun avantajı çok düşük yoğunluğa sahip yüzey antijenlerini gösterebiliyor olmasıdır. Fakat özellikle olmayan bağlanma daha sık görülmektedir (54–57).
2.6.2. Akım Sitometrisi Analizi

Akım sitometrisi; örnek toplama ve taşım sistem, akış sistemi (sheath fluid), lazer kaynağı, sferik ve çapraz silindirik filtreler, odaklama aynaları, sinyal dedektörleri (optik sinyal ve elektrik sinyali), bilgisayar (veri toplanması, saklanması, sunum ve analizi) ve ayırma mekanizması (cell sorting) olmak üzere pek çok sistemin birleşmesinden oluşur.

2.7. CD Belirteçlerinin Özellikleri

Lenfosit ve diğer lökositler yüzeylerinde birçok sayıda farklı molekülleri eksprese ederler. Bunlardan bazıları kısa aralıklarla hücrelerin özgün gelişim evrelerinde, hücre farklılaşması ve aktivasyonunda gözlenirken, diğerleri farklı hücre bağlamlarıyla karakterizedir. Hücre varlıklarının ayrılması için kullanılan bu moleküller belirteç adını almışlardır ve bunların çoğu özgül monoklonal antikorlarla ayrımlanır. Yakın zamanda bu hücre yüzey molekülleri için bir sistematik sıralama geliştirilmiştir ki buna CD sistemi denir ve bu belirteçler CD1, CD2 gibi sıralanırlar. CD (Cluster designation) belirteçleri, insan lökosit antijenlerine karşı dünya çapındaki değişik laboratuvarlarda tesbit edilen monoklonal antikorların bilgisayar analizleriyle tanımlanmıştır.

Bir uluslararası çalışma grubu, antikorlar yoluyla işaretlenen molekülleri ağırlıklarına ve boyanan lökositlerin üzerindeindeki yapılarına göre değerlendirilmiştir. Monoklonal antikorlar benzer özgül karakterleriyle birlikte gruplandırılmışlar ve kendilerine CD sayıları verilmiştir. Bu sayılar, günümüzde monoklonal antikorların bir grubuya tanımlanmış özgül molekülleri belirtmek için de kullanılmaktadırlar. Çoğu vakalarda bu moleküllerin fonksiyonları bilinmemektedir(58).
Bu belirteçler probe olarak, floresan antikorların kullanımlarıyla tariflenmektedirler. Bu durumda yüzey belirteçleri antijenler olarak görev yapmaktadır.

CD 3: Bu belirteçler T hücreleri ve timositlerde bulunurlar. T hücre antijen reseptörünün hücre yüzeyinde ekspresyon ve sinyal iletiminden sorumludurlar.

CD 4: Smf 2 major histokompabilit kompleksi (MHC II) ile sınırlı T hücreleri, timosit alt grupları, monosit ve makrofajlarda bulunurlar. Smf II MHC ile sınırlı T hücre aktivasyonunda sinyal iletimi ile alakalı olup adezyon eş reseptörüdür(59).

CD8: Sitotoksik T lenfositlerin yüzey belirleyicisidir. Periferik kan T lenfositleri CD8 molekülü ya CD8α zincirinden oluşmuş bir homodimer ya da CD8α ve CD8β zincirlerinin birlikte oluşturdukları heterodimer yapısındadır. CD8 molekülü hem MHC smf I molekülüne tutunmayı sağlamaktaki hem de sinyal iletimini kolaylaştırmaktadır (14, 18, 26).

CD 14: Temel hücresel kaynakları: Monosit, makrofaj ve granülositlerdir. Serumda çözünür formda bulunurlar. Lipopolisakkarit ve lipopolisakkarit kompleksine bağlanıp, lipopolisakkaritle indüklenen makrofaj aktivasyonu için gerekli dır.

CD 19: Birçok B hüresinde bulunur. B hücre aktivasyonunda rol oynar. CD21 ve CD81 ile eş-resesptör kompleksi oluşturarak B hücre antijen reseptör kompleksinden gelen sinyallerle görevdeşlik sağlar.

CD 45: Lökosit ortak antijeni olarak da isimlendirilir. Hematopoetik hücrelerden kaynak alır. T ve B hücreşi antijen reseptör aracılı sinyal iletiminde önemli role sahiptir.

CD45R: CD45’in sınırlı hücresel ekspresyonuna sahip formları olarak da bilinirler.

CD45RO: Bellek T hücreleri ve B hücresi alt grupları, monosit ve makrofajlarda bulunurlar.

CD45RA: Naif T hücrelerinde, B hücreleri ve monositlerde bulunurlar.

CD45RB: B hücre ve T hücre alt gruplarında bulunurlar.
CD 56: Natural Killer(NK) hücreleri ve monositlerde bulunurlar. Homotipik adezyondan sorumludurlar.

CD 158: NK hücreleri ve bazı T hücrelerinden kaynak alırlar. NK hücrelerinin MHC sınıf I moleküllерini bağlamasını takiben aktivasyon veya inhibisyonundan sorumlu dur.

NKG2A: CD56 ile beraber lenfositler üzerindeki yardımcı T hücre 2 (TH2) yolunu aktive ederler. NKG2A sitotoksik hücreler üzerinde ekspresse olmuşken, aktive yardımcı T hücreler üzerinde de bulunmaktadır. Makrofajların aktivasyonunu inhibe ederek immunomodülatör süreçte immünosupresif etkiye yol açabilirler.

NKG2C: TH1 yolunu aktive ederler. Böylece proinflamatuar süreçte rol alırlar (59).

2.8. Bağışıklık Sistemi

Bağışıklık sistemi, yapısal olarak doğal (innate) ve kazanılmış (acquired) bağışıklık olmak üzere iki alt gruba ayrılır.

2.8.1. Doğal Bağışıklık Sistemi

Herhangi bir patojenle ilk karşılaşımda ortaya çıkan bağışık yanıttır. Yabancı antijenlere karşı özellikle olmayan engelleri kapsar. Açığa çıkmasında hafıza özelliklerine gerek yoktur.

Doğal bağışıklık sisteminin elemanları şu öğeleri içerir:

1. Epitel tabakası ve mukozał engeller
2. Fagositler (monosit, makrofajlar)
3. Kompleman sistemi
4. Doğal bağışıklık sitokinleri

2.8.2. Edinsel Bağışıklık Sistemi

Antikorlar edinsel bağışıklığın humoral fazında etkilidirler. İşte bu antikorlar herhangi bir antijene karşı B lenfositlerinin özelleşmesiyle oluşan plazma hücrelerince üretilirler.

2.8.3. Bağışıklık Sisteminin Organları

2.8.3.1. Merkezî Lenfoit Organlar

2.8.3.1.1. Timus

Ön mediastende yer alan, yaşlanmayla atrofiye olan timositlerin ve artan yağ hücrelerinin bulunduğu, hücresel bağışıklığın mirengi noktasını oluşturan bir organ olup, kemik iliğinden göç eden T lenfositlerinin olgunlaştırığı bir vücutsal yapıdır (63–66).
2.8.3.1.2. Kemik İliği

Ağsı hücrelerden oluşan, gevşek bir bağ dokusu içinde yer alan, gelişmekte olan kan ve yağ hücrelerinden oluşan, B lenfositlerin ana yerleşim yeridir (63–66).

2.8.3.2. Çevresel Lenfoit Organlar

2.8.3.2.1. Plazma Hücreleri

2.8.3.2.2. Dendritik Hücreler

2.8.3.3. Natural Killer Hücreler: (Doğal Öldürücü Hücreler-NK)

Natural killer hücreler, daha önceden hedef hücre antijenleriley sensitizasyona gerek olmadan ve MHC molekulleriley ilişkisiz olarak sitolitik aktivite gösteren hücrelerdir. Bu hücreler, periferik kan lenfositlerinin % 5’ini oluştururlar, iki yönlü gelişim yeteneğine sahip T/NK progenitör hücrelerden gelişirler ve CD56(+) CD16(+) CD3(-) yüzey fenotipik özelliklerine sahip olup sitoplazmalarında çok sayıda granül bulunduran büyük lenfosit görünümüne haizdirler. Natural killer hücreleri, virüslle enfekte hücreleri ve tümör hücrelerini lizize uğratabilirler. NK hücrelerinin fagositik aktiviteleri yoktur ve lizozom gibi mikrobisidal sistemlere sahip değildirler. NK hücrelerinin hedef hücreleri
tahribindeki major mekanizma, bu hücrelerdeki granüllerin hedef hücreye ekzositozu ile tetiklenen apopitozdur (67, 68).

Natural killer hücreler IgG’nin FegRIII olarak bilinen düşük affiniteli reseptörünü ve IL-2’nin p70 subtipini taşırlar. Yüzey antijenleri bakımından heterojen bir grup olmakla birlikte taşıdıkları CD16 (IgG için Fc reseptörü–FcγIII) ve CD56 (Nöral hücre adezyon molekülü, N–CAM izoformu) molekülleri büyük ölçüde NK’lara özgüdür ve fenotipik olarak tanımlanmalarında kullanılır (40, 41, 42). Natural killer hücreler tarafından tanınan hedef hücrelerin yüzey molekül yapısı henüz bilinmemektedir. Natural killer hücreleri, IgG ile kaplı hedef hücreler, taşıdıkları FcgamaRIII reseptörleri ile bağlanması sonucu antikora bağlı hücresel sitotoksik reaksiyonda effektör hücre olarak görev alabilirler.

Sitotoksik hücrelerden farklı olarak bu hücrelerin, sitolitik etkileri için hedef antijenler ile daha önce ilişki kurulmuş olmasına ve sitokinler ile etkileşime gerek yoktur. Ancak IFN, TNF ve IL–2 ile etkileşimini takiben bu hücrelerin liziz yeteneklerinde artış olduğu bilinmektedir, bu hücrelere LAK (lymphokine-activated killer) hücreleri ismi verilmektedir (67,68).

Natural killer hücrelerin hedef hücreleri lizise uğratması, sitotoksik hücrelerde olduğu gibi (granül ekzositoz ve hücre toksin sekresyonu) benzer mekanizmalarla gerçekleşir. NK granülleri, por oluşturan protein, sitotoksinler, serin esterazlar ve proteoglikanları ihtiva ederler. Natural killer hücreler, TNF ve IFN-γ’yı sentezleyebilir.

2.8.3.4. Granülositler

Kemikiliğinde myelomonoblastik kök hücreden itibaren miyeloblast, promyelosit, miyelosit, metamiyelosit evrelerinden geçerek gelişirler ve periferik kana geçerler. Nükleus, genç şekillerde bant biçiminde olup hücre yaşlandıkça yer yer boğulmayla loblu görünüm alır. Wright boyasıyla boyandıklarında sitoplâzmalarda granülleri ince erguvanî renkli olup granulositlere nötrofil, iri parlak kırmızı renkli olanlara eozinofil; iri lacivert renkli olanlara da bazofil denir (68).

2.8.3.5. Nötrofiller

Nötrofillerin görevleri, mikroorganizmaların, yabancı maddelerin, doku yıkım artıklarının fagositozu, sekresyon ve akut faz cevabının oluşmasına katkıda bulunmaktır.

2.8.3.6. Bazofiller

Parazitlere karşı konak direncinin oluşmasında yer alırlar.

2.8.3.7. Eozinofiller

Eozinofiller, bazofil ve eozinofil niteliklerine sahip hibrid prokürsörlerden farklılaşır. Etkin oksijen metabolitleri (respiratory burst ürünleri) ve hedef hücre membranında oluşturdukları, osmotik sitolize neden olabilen hasarlayıcı etkileriyle parazitlere karşı mücadelede yer alırlar (69).

2.8.3.8. Mukozal İlişkili Lenfoit Doku (MALT)

Organize olmuş lenfoit dokular olup, solunum, ürogenital ve sindirim sistemindeki mukoit membranların savunmasında yer almaktadırlar. Bunlara örnek olarak peyer plakları ve tonsiller verilebilir (70–73).

2.8.4. Lenfositler

Lenfositler, değişik antijenik yapıları özellikle olarak tanıyan ve birbirinden ayrılan tek hücre topluluğudur.

İşlevlerine ve salguladıkları proteinlere göre üç ana gruba ayrılır: 1. B lenfositler 2. T lenfositler
3. Doğal öldürücü hücreler

Tüm bu lenfositlerin ayrılmalarını sağlayan, fenotik bir ayrıç gibi davranışın bir takım membran proteinleri bulunmaktadır. Numerik olarak tanımlanan bu proteinlere 'cluster of differentiation' (CD) denilir (74).

2.8.4.1. B Lenfositler

B lenfositler, kemik ilgiğinden kaynaklanıp erken dönemdeki olgunlaşmalarını burada tamamlar. Vücutta antikor oluşturabilen tek hücre membranını bağlı bulunan antikorlardır. Antijenlerin membrana bağlı bulunan bu antikorlarla karşılaşan B hücreleri aktive olup, aktif olarak antikor salgulayan ekspert hücrelere doğru farklaşma gösterirler. 84. Tüm B lenfositler kemik ilgiğinde (KI) bulunan ve B hücresine doğru farklaşmacığı belirlenmiş bir kök hücreden kaynaklanırlar. Tayin edilebilir bir immunglobulin gen ürünü sentezleyebilen ilk hücre pre-B lenfosit olup, salgılanan ürün değişken (variable, V) ve sabit (constant, C) bölgelerini içeren sitoplazmik m ağır zinciridir. Pre B lenfositler sadece kemik iliğ ve fetal karaciğer gibi hematopoetik dokularda bulunurlar (75). B Lenfositlerin gelişim evreleri, yüzeylerinde sergilenen antijenler ile takip edilebilir. Erken dönemde pre B lenfositlerin yüzeyinde Class II Büyük Doku Uyum (MHC Class II, Ia), CD19, CD34 antijenleri bulunurken, IgM ağır zincirinin yeniden düzenlenmiş genleri de bulunur. CD19, B lenfositlere sinyal iletilmesinde rol olan hücre yüzey antijen kompleksinin bir elemandır, CD34 ise immatur miyeloid hücrelerde de bulunan bir transmembran glikoprotein olup, yönlendirilmemiş öncü (progenitor) hücreleri tanımlar. CD 34'un bir adezyon molekülü gibi çalıştığı düşünülmektedir (75).

Bu dönemde hücrelerin sitoplazmasında B lenfositlere özgü CD22 molekülü bulunsa da CD22 nin hücre yüzeyine çıkışı matür, istirahat halindeki hücrede yüzeyel Ig D (sIgD) nin çıkışından sonra gezdirilir. CD22,” neural celllar adhesion molecule” (NCAM) ile çarpıcı bir benzerlik gösteren Ig benzen bir molekül olup; B lenfosit, monosit, eritrositler arasında iletişimde rol aldığı düşünülmektedir. Pre B hücre gelişimi sırasında CD29/49d, CD 40, CD45R, CD9. CD24 gibi çeşitli antijenler de sergilenir.
CD40 ise CD4+ olan T lenfositlerin yüzeyindeki CD4 ligandı (CD40L) aracılığıyla B hücrelerin büyümesinin düzenlenmesinde rol almaktadır. CD45 molekülünün sitoplazmik kısmının tirozin kinaz aktivitesi olup, hücre fonksiyonlarının düzenlenmesinde rol aldığı düşünülmektedir.

CD9, hücre adezyonu ve aktivasyonunda rol alırken; granulositlerde de sergilenen CD24 sinyal iletiminde etkilidir.

Erişkinlerde pre B hücre gelişimi kemik ilğiğinde gerçekleşir. Fötusta ise bu gelişim karaciğerde başlayıp, kemik ili, dalak ve lenf nodlarında devam eder.

Gebelikin 22–24. haftalarında fötal B hücrelerin çoğu sIgM ve IgD yanı sıra asla matür T hücrelerine özgü olan CD5 molekülünü de sergiler. Pre B ve matur B lenfositlerde sergilenen CD72 molekülü CD5 in doğal bir ligandıdır. Pre B hücreler olgunlaştırıca periferik kana geçerek sekonder lenfoid organlara doğru hareket ederler. İstirahat halindeki olgun B hücrelerin yüzeyinde IIa, CD19, CD20, CD24, CD22, CD40 ve CD45R bulunurken CD9, CD10 ve CD34 ekspresyonu artmıştır (76).

2.8.4.2. T Lenfositler

Timus, T lenfositlerin olgunlaşması ve aktif hale gelebilmesi için gerekli olan bir organdır. Hamileliğin dördüncü haftalarında 3. ve 4. faringeal arktan aşağı doğru ilerleyen timus ön mediastende V şeklinde solit bir organ oluşturur. Fetal timus, hamileliğin üçüncü ayında itibaren fonksiyonel bir hale gelir (77,78).

T lenfositleri belli bir kök hücreden gelişirler. T lenfosit kök hücreleri kemik ilğinden kaynaklanmakta olup, olgunlaşmak için timus kortekside giderler. Timus kortekside olgunlaşacak olan bu lenfositlere timosit denir. İlkel timositler timusa gitmeden önce olgun T lenfositlere özellikle olan yüzey belirteçlerine sahip değildirler.

Olgunlaşan timosit hücreleri medullaya doğru ilerleyip, bir takım değişikliklere uğrar. Bu değişiklikler sürecinde, T lenfositler bazı yüzey belirteçlerini kaybederken bazilarını da kazanırlar (74, 77, 79).

Timositler yüzeylerinde CD4 ve CD8 molekülleri barındırmalarına göre 4 alt gruba ayrılırlar:

1. CD4 ve CD8 bulundurmayan çift negatif
2. İki molekülü de bulunduran çift pozitif
3. Sadece CD4 bulunduran tek pozitif
4. Sadece CD8 bulunduran tek pozitif

Timus içerisindeki timositler olgunlaştırılsa, dönüşen T lenfositlerde TCR ekspresyonu artar, aynı zamanda yüzeydeki CD4+ ve CD8+ moleküllерinden biri kaybedilir. Ardından CD2+ ve CD3+ belirteçlerini birlikte bulunduran, aynı zamanda yüzeydeki CD4+ ve CD8+ moleküllerinden birini kaybeden CD2+ ve CD3+ belirteçle birlikte bulunduran T lenfositlerde TCR ekspresyonu artar, aynı zamanda yüzeydeki CD4+ veya CD8+ moleküllerini bunyesinde barındıran iki farklı lenfosit grubu oluşur. Daha sonra bu lenfositler organ içi kan dolaşımına katılar. Yoluyla organizmaya ait olup, periferede geçmiş T lenfositlerde CD4 ve CD8 belirteçleri bir arada bulunmaz.

Timositler timustaki olgunlaşmalarını üç günde tamamlar. Bu esnada timositlerin tümüne yakını apoptozize uğrar (67, 77, 79, 80, 81).

T lenfositlerinin ancak %1'i terk eder, geri kalanına programlanmış hücre ölümüne maruz kalır. Apoptozıle sonuçlanan bu süreçte, ölen timositlerin %75'i CD4+-CD8+ (cift pozitifken) sadece %13'ü CD4-CD8- (cift negatif) hücrelerden ibaretir. Apoptozize uğrayan hücrelerden çoğu yüksek yoğunlukta bulunduğu kortikomedüller bağlantılı bölgesindeki CD4+CD8+ lenfositler olup, daha azı da kortekste tesbit edilir. TCR spektrumunun özgüllüğü değişip giden gen düzenlemeleriyle oluşur.

Timusta değişim evrelerini sonuçlandıran T lenfositlerin kan akımında hangi mekanizmalarla girdiği ve hangi alt sınıflara ayrılabileceği kesin olarak bilinmemektedir. Gelişimini tamamlayan T lenfositlerin kan akımına karşılık dalak, lenf düğümü ve mukoza lenfoid dokular gibi ikincil lenfoid oluşumlara gittikleri belirlenmiştir. Ayrıca dolaşmdaki lenfositlerin %60-80’i T lenfosit olup, üçte ikisi CD4, üçte biriye CD8 belirtecini taşır (74, 77, 79, 80).

T lenfositleri timustan perifere geçer ve orada çoğalır. Periferdeki T lenfosit saylarının sabit tutulması, timik prekürsör havuzuna değil, timus dışı hücre bölünmesine bağlıdır. T lenfosit spektrumu timusta belirlenir, fakat T lenfosit
özelliklerinin ileri aşamaları vücudta şekillenmiş T lenfosit havuzunun genişlemesiyle sağlanır (79).

2.8.4.2.1. T Lenfosit Hücre Algacı

2.8.4.2.2. Yardımcı T Lenfositler - CD4+ T Lenfositler: T Helper Lenfositler (Th)

Yardımcı T lenfositleri, MHC Klás–II molekülleri ile sunulan peptidleri tanır. Antikor yapıcı B lenfositlerin ve sitotoksik T lenfositlerin aktivitelerini şiddetlendirirler.

2.8.4.2.2.1. Th1 Lenfositler

İnterferon gamma (INF–γ), IL–2, Tümör Nekrozis Faktör–beta (TNF–β) üretirler. Th1 lenfositler, B lenfositleri IgG1 ve IgG3 antikorlarını sentezlemeye yöneltilir. Temel olarak INF–γ üreterek opsonizasyon sağlama, kompleman bağlayan antikor üretiminde artış ve makrofajların aktivasyonu sonucu antijenlerin yok edilmesi işlevlerini yürütürler. Th1 lenfositlerden üretilen sitokinler özellikle makrofajları ve sitotoksik T lenfositleri aktive eder. Th1 lenfositler asıl olarak sitotitik aktivite gösterirler ve hücresel bağışık cevapta etkin ve kilit rol oynarlar (83, 84,85).

2.8.4.2.2.2. Th2 Lenfositler

2.8.4.2.2.3. Treg Hücreleri (Regülatör T Lenfositler)

Bu hücreler, ayrıca CD45RBLo, CD5, OX40, CTLA–4, glukokortikoid–induced TNF reseptör (GITR), FOXP3 gibi molekülleri de eksprese ederler.(86-88)

Treg hücrelerinin regülaşyon etki mekanizmaları tam olarak aynılataılmamıştır. Ancak yapılan çalışmalarda bazı özellikleri ortaya konmuştur.

Treg hücreleri, hem CD4⁺ hem de CD8⁺ T lenfositleri regüle eder. TGF–β ve IL–10 sentezleyerek etkisi Th1 üzerinde inhibisyonu neden olurlar. T lenfositlerin IL–2 üretimini ve proliferasyonunu baskılar (86, 87, 89, 90).

2.8.4.2.2.4. Th17 Hücreler

2.8.4.2.3. Sitotoksik T Lenfositler (Tc) – CD8⁺ T Lenfositler

Bu deliklerden veya endositozla hedef hücreye giren granzimler ise sitoplazma da bulunan kaspaz isimli enzimleri aktive ederek apopitozı başlatır ve hücre ölümü gerçekleşir. Granzimleri aktive etmek için kullanlan ikinci yol ise kalsiyumdan bağlanmalıdır. Bu yolda aktive Tc lenfositlerden eksprese edilen Fas ligand (Fas L), hedef hücredeki Fas(CD95) adı verilen uyarıcı reseptörlerle ilişki kurar. Yine granzimler aktive olarak apopitozı uyarır. Hedef hücrelere bağlanmalarında pek çok adezyon molekülü (LFA-1, ICAM-1) görev yapar (83,82,92).

2.8.5. Genel Bilgiler ve Çalışmanın Amacı

3. MATERYAL METOD

Kefir verilmeden önce gönüllülerden 2 hafta fermente ürünlere rica edilmiştir. Bu yoksunluk süresi sonrası toplam 6 hafta, hafta içi günleri 200 mililitre kefir verilmiştir. Laboratuvar testleri için kefir verilmeden hemen önce (0. hafta) kefir başlanduktan sonra 3. ve 6. haftalar ve kefir verilmesi kesildikten 3 hafta sonra (9. hafta) kan ve serum örnekleri toplanmıştır. Toplanan kan örneklerinden manüel olarak toplam lökosit sayısını tespit edilmiştir

Çalışmamızda ferment edilmek üzere %100 yaşamı SEK süt kullanılmış ve elimizde mevcut tozlarla karıştırmış süt bir gece 37 derecede mayalanmaya tâbi tutulmuştur. Deneklerimiz çalışma boyunca sabah kahvaltılaryla beraber 200 mililitre kefirle ferment edilmiş bu ürünleri içmişler ve çalışma boyunca her 3 haftalık kefir almın aşaması ardından sabah aç karnına tam kan sonuçlarına bakılmış ve deneye adaptasyonları değerlendirilmiştir.

Akım sitometrede boyasız olarak granülosit, monosit ve toplam lenfosit oranları forward ve side scatter grafiginden belirlenmiş, lenfosit kapsından monoklonal antikorlarla boyandıktan sonra mononükleer hücre alt gruplarının sayıları (CD3, CD4, CD8, CD19, CD56, Cd158a, NKG2a ve NKG2c) ölçülmüştür ve yine lökosit, lenfosit, monosit ve nötrofil alt grupları incelenerek araştırmaya yön verilmiştir.
3.1. Manuel Lökosit Sayımı

Lökosit sayma eriyi: 30 ml glasial asetik asit, 0,4 gr kristal viole, distile su ile 100 ml’ye tamamlanarak hazırlanmıştır. EDTA’lı tüpe alınan kan lökosit sayma eriyi ile 10 kat sulandırılara thoma lamının sayma kamarasına yayılarak ışık mikroskobu altında sayım yapılmıştır. Bir büyük karedeki hacim 0,1 mm³ tür. Bir mm³ için sayı 10 ile ve sonra kan 10 defa seyreltildiğinden 10 ile çarpıp 1mm³’teki lökosit sayısı bulunmuştur.

3.2. Bağışıklık Dönemi

Ortalama ve standart deviasyonlar bakımından minimum ve maksimum değerler farklı lökosit ve lenfosit alt gruplarına göre Becton Dickinson (BD Biosciences, San Jose, Calif. USA) tarafından üretilmiş bir FACS Calibur 2’li lazer sistemiyle belirlenmiştir. Lenfosit, monosit ve granülositler boyut ve granülaritelerine göre ayrılmıştır. Daha sonra fluroscein isothiocyanate (FITC), phycoerthrin (PE) ve perinidin chlorophyll protein (PERcp) ile özellikle monoklonal antikorlarla konjuge edilerek ve böylece hücrelerle işarelenerek detaylı bir şekilde incelenmiştir.

Tam kandan akım sitometre yöntemiyle CD3, CD4, CD8, CD19, CD56, CD158a, NKG2a ve NKG2c parametreleri ve yine lökosit, lenfosit, monosit ve nötrofil alt grupları incelenererek araştırmaya yön verilmiştir.

3.3. İstatistiksel Analiz

Değerlendirilen bütün bilgiler SPSS yazılım 15,0 (SPSS Inc. Chicago 3i USA) göre analiz edilmiştir.

Her çalışma değerinin çalışmaya başlama ve sonuçları arasındaki ve ikili haftalar dahilindeki genel istatistiksel göstergeleri non parametrik Friedman testi ile belirlenmiş ve p< 0,05 anlamlı kabul edilmiştir. 2’li karşılaştırmalarında Wilcoxon Signed-Rank testi kullanılmış ve Benferoni düzeltmesi yapıldıktan sonra p< 0,0125 anlamlı olarak kabul edilmiştir.
Çalışmada kullanılan moAb’lar:

- Anti–CD3 PE (Katalog no: 555340, BD Pharmingen, USA).
- Anti–CD4 FITC (Katalog no: 555346, BD Pharmingen, USA).
- Anti–CD8 FITC (Katalog no: 555634, BD Pharmingen, USA).
- Anti–CD19 PE (Katalog no: 555413, BD Pharmingen, USA).
- Anti–CD56 FITC (Katalog no: 555516, BD Pharmingen, USA).
- Anti–CD158 PE (Katalog no: 556063, BD Pharmingen, USA).
- NKG2A (Katalog no: 550520, BD Pharmingen, USA)
- NKG2C (Katalog no: 550520, BD Pharmingen, USA)

Çalışmada CD3 FITC/CD4 PE, CD3 FITC/CD8 PE, CD3(negatif) FITC/CD19 PE, CD3 PE/CD56 FITC ve CD3(negatif) PE/CD56 FITC ile birlikte ikili, CD158a PE/CD56 FITC/CD3 PerCp, CD158a PE/CD56 FITC/CD3(negatif) PerCp, NKG2a PE/CD56 FITC/CD3 PerCp ve NKG2a PE/CD56 FITC/CD3(negatif) PerCp ile birlikte üçlü olarak diğer moAb’lar ise ayrı tüplerde çalışıldi.

1. EDTA’lı tüplere alınan bir hacim (2 ml) venöz kan örneği beş hacim (10 ml) lysis buffer ile 50 ml'lik falcon tüplerinde oda ısısında eritrosit lizisine tabi tutuldu (Lysis buffer: 0,15 M NH4Cl, 0,01 M KHCO3, 100 µM EDTA, 1000 ml distile su).

2. 800 devirde (rpm) 10 dakika santrifüj edildikten sonra pellet 25 ml phosphate buffer saline(PBS)’de çözülen 1500 devirde 10 dakika santrifüj edildi (PBS: 0,005 M K2HPO4, 0,005 M KH2PO4, 0,014 M NaCl, 1000 ml distile su).

3. Pellet 2 ml PBS’te çözüldü 100’er µl hücre süspansiyonu 75 mm’lik polipropilen tüplerle aktarılırlar moAb’larla birleştirildi. 20 dakika oda ısısında karanlık alanda inkübasyon yapıldı.

4. Tüpler PBS ile doldurulup 1500 devirde 10 dakika santrifüj edildikten sonra pellet 300 µl PBS ile sulandırılıp akım sitometri cihazında okutuldu.
Tüm numuneler akım sitometri ile (FACS Calibur 3A, Becton Dickinson, San Jose, CA, USA) çalışıldı ve sonuçlar CellQuest Pro yazılımı (Becton Dickinson, San Jose, CA, USA) ile analiz edildi. Sonuçlar forward scatter / side scatter ve side scatter / CD45 grafikleri yardımıyla oluşturulmuş lenfosit kısımdaki hücrelerin CD ile işaretli hücrelere oranları olarak hesaplandı ve yüzde olarak kaydedildi.
4. BULGULAR

Tablo 3 - Tam kandaki lökosit saylarının (x10³) 0., 3, 6 ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>LOKOSİT</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 – 3</td>
<td>7.45 (4.30–13.10)</td>
<td>6.75 (4.90–8.91)</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>0 – 6</td>
<td>7.45(4.30–13.10)</td>
<td>6.90 (3.80-10,50)</td>
<td>0,007</td>
</tr>
<tr>
<td></td>
<td>0 – 9</td>
<td>7.45(4.30-13,10)</td>
<td>7.00 (5,40- 10,00)</td>
<td>0,244</td>
</tr>
<tr>
<td>3 – 6</td>
<td>6,75 (4,90 – 8,40)</td>
<td>6,90 (3,80 – 10,50)</td>
<td>0,421</td>
<td></td>
</tr>
</tbody>
</table>

Lökositler 3. ve 6. haftalarda 0. haftaya göre anlamlı oranda düşmüştür.

Tablo 4 - Nötrofil parametrelerinin ikili haftalar ve toplamda dağılımı

<table>
<thead>
<tr>
<th>NÖTROFİL</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 – 3</td>
<td>66,15 (30,00–85,20)</td>
<td>58,80 (40,00–70,00)</td>
<td>0,058</td>
</tr>
<tr>
<td></td>
<td>0 – 6</td>
<td>66,15 (30,00 -85,20)</td>
<td>57,90 (44,90 – 70,80)</td>
<td>0,035</td>
</tr>
<tr>
<td></td>
<td>0 – 9</td>
<td>66,15(30,00 – 85,20)</td>
<td>56,70 (43,30 – 6670)</td>
<td>0,016</td>
</tr>
<tr>
<td>3 – 6</td>
<td>58,80 (40,00 – 70,00)</td>
<td>57,90 (44,90- 70,80)</td>
<td>0,983</td>
<td></td>
</tr>
</tbody>
</table>

Nötrofiller 3. , 6. ve 9. haftalarda 0. haftaya göre değişmemiştir.

Tablo 5 - Tam kandaki lenfosit yüzdelerinin 0, 3, 6 ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>LENFOSİT</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 – 3</td>
<td>25,50(11,80 – 47,00)</td>
<td>29,15 (6,30 – 51,40)</td>
<td>0,472</td>
</tr>
<tr>
<td></td>
<td>0 – 6</td>
<td>25,50(11,80 – 47,00)</td>
<td>32,30 (22,00- 49,60)</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>0 – 9</td>
<td>25,50(11,80 – 47,00)</td>
<td>32,30 (19,50 – 48,40)</td>
<td>0,012</td>
</tr>
<tr>
<td>3 – 6</td>
<td>29,15(6,30 - 51,40)</td>
<td>32,30(22,00 – 49,00)</td>
<td>0,094</td>
<td></td>
</tr>
</tbody>
</table>

Lenfositler 9. haftada 0. haftaya göre anlamlı oranda artmıştır.
Tablo 6 - Tam kandaki monosit yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>MONOSİT</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>(0,002)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 – 3</td>
<td>4,20(1,30 – 24,50) – 6,45(4,00 – 52,10)</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 – 6</td>
<td>4,20(1,30 – 24,50) – 6,80(0,80 – 10,80)</td>
<td>0,031</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 – 9</td>
<td>4,20(1,30 – 24,50) – 6,90(3,30 – 9,20)</td>
<td>0,007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 – 6</td>
<td>6,45(4,00 – 52,10) – 6,80(0,80 – 10,80)</td>
<td>0,472</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 – 9</td>
<td>6,80(0,80 – 10,80) – 6,90(3,30 – 9,20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monositler 3. ve 9. haftalarda 0. haftaya göre anlamlı oranda artmıştır.

Tablo 7 - CD3+CD56+CD158+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3+</td>
<td></td>
<td></td>
<td>(0,014)*</td>
</tr>
<tr>
<td>0–3</td>
<td>2,75(0,20–9,10)</td>
<td>0,80(0,00–9,20)</td>
<td>0,028</td>
</tr>
<tr>
<td>0–6</td>
<td>2,75(0,20–9,10)</td>
<td>0,10(0,00–3,10)</td>
<td>0,000</td>
</tr>
<tr>
<td>0–9</td>
<td>2,75(0,20–9,10)</td>
<td>0,30(0,00–5,10)</td>
<td>0,004</td>
</tr>
<tr>
<td>3–6</td>
<td>0,80(0,00–9,20)</td>
<td>0,10(0,00–3,10)</td>
<td>0,015</td>
</tr>
<tr>
<td>3–9</td>
<td>0,80(0,00–9,20)</td>
<td>0,30(0,00–5,10)</td>
<td>0,085</td>
</tr>
<tr>
<td>6–9</td>
<td>0,10(0,00–3,10)</td>
<td>0,30(0,00–5,10)</td>
<td>0,035</td>
</tr>
</tbody>
</table>

CD3+, CD 56+ ve CD158+ de 6. haftada 0. haftaya göre anlamlı bir düşüşe ve 9. haftada 0. haftaya göre anlamlı bir artışa rastlanmıştır.

Tablo 8 - CD3-(negatif)CD56+CD158+ hücre yüzdelerinin 0., 3., 6. ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>(0,030)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–3</td>
<td>4,38(0,00–10,10)</td>
<td>2,55(0,00–13,31)</td>
<td>0,170</td>
</tr>
<tr>
<td>0–6</td>
<td>4,38(0,00–10,10)</td>
<td>3,20(0,00–11,50)</td>
<td>0,446</td>
</tr>
<tr>
<td>0–9</td>
<td>4,38(0,00–10,10)</td>
<td>4,10(0,30–16,60)</td>
<td>0,472</td>
</tr>
<tr>
<td>3–6</td>
<td>2,55(0,00–13,30)</td>
<td>3,20(0,00–11,50)</td>
<td>0,538</td>
</tr>
<tr>
<td>3–9</td>
<td>2,55(0,30–13,30)</td>
<td>4,10(0,30–16,60)</td>
<td>0,022</td>
</tr>
<tr>
<td>6–9</td>
<td>3,20(0,00–11,50)</td>
<td>4,10(0,30–16,60)</td>
<td>0,020</td>
</tr>
</tbody>
</table>

CD3- CD56+ ve CD158+ parametrelerinde haftalar arasında değişiklikler olmamıştır.
Tablo 9 - CD3(negatif)CD56+ hücre yüzdelarının 0, 3, 6 ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,488)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–3</td>
<td>9,20(0,40- 25,90)</td>
<td>9,30(1,90 – 19,30)</td>
<td>0,276</td>
</tr>
<tr>
<td>0–6</td>
<td>9,20(0,40- 25,30)</td>
<td>8,07(0,00- 20,10)</td>
<td>0,184</td>
</tr>
<tr>
<td>0–9</td>
<td>9,20(0,40- 25,90)</td>
<td>10,65(3,20–18,64)</td>
<td>0,663</td>
</tr>
<tr>
<td>3–6</td>
<td>9,30(1,90 – 19,30)</td>
<td>8,07(0,00–20,10)</td>
<td>0,014</td>
</tr>
<tr>
<td>3–9</td>
<td>9,30(1,90 – 19,30)</td>
<td>10,65(3,20–18,64)</td>
<td>0,486</td>
</tr>
<tr>
<td>6–9</td>
<td>8,07(0,00–20,10)</td>
<td>10,65(3,20–18,64)</td>
<td>0,127</td>
</tr>
</tbody>
</table>

CD3- ve CD56+ parametrelerinde haftalar arasında değişiklikler olmamıştır.

Tablo 10 - CD3+CD56+ hücre yüzdelarının 0, 3, 6 ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>(0,874)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–3</td>
<td>3,95(0,20–7,60)</td>
<td>3,65(1,10–24,00)</td>
<td>0,943</td>
</tr>
<tr>
<td>0–6</td>
<td>3,95(0,20–7,60)</td>
<td>4,05(0,30–9,44)</td>
<td>0,542</td>
</tr>
<tr>
<td>0–9</td>
<td>3,95(0,20–7,60)</td>
<td>3,65(0,70–9,00)</td>
<td>0,571</td>
</tr>
<tr>
<td>3–6</td>
<td>3,65(1,10–24,00)</td>
<td>4,05(0,30–9,44)</td>
<td>0,619</td>
</tr>
<tr>
<td>3–9</td>
<td>3,65(1,10–24,00)</td>
<td>3,65(0,70–0,90)</td>
<td>0,122</td>
</tr>
<tr>
<td>6–9</td>
<td>4,05(0,30–9,44)</td>
<td>3,65(0,70–9,00)</td>
<td>0,292</td>
</tr>
</tbody>
</table>

CD3+ ve CD56+ parametrelerinde haftalar arasında değişiklikler olmamıştır.

Tablo 11 - CD3-(negatif) CD56+ NKG2a+ hücre yüzdelarının 0, 3, 6 ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>(0,001)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–3</td>
<td>7,75(0,10- 29–70)</td>
<td>4,80(0,90–15,70)</td>
<td>0,102</td>
</tr>
<tr>
<td>0–6</td>
<td>7,75(0,10- 29–70)</td>
<td>2,95(1,13–11,30)</td>
<td>0,006</td>
</tr>
<tr>
<td>0–9</td>
<td>7,75(0,10- 29–70)</td>
<td>3,10(0,10–11,30)</td>
<td>0,004</td>
</tr>
<tr>
<td>6–9</td>
<td>4,80(0,90–15,70)</td>
<td>2,95(1,13–11,30)</td>
<td>0,140</td>
</tr>
</tbody>
</table>

CD3- CD56+ NKG2a parametrelerinde 6. ve 9. haftalarda 0. haftaya göre anlamlı düşüşler görülmüştür.
Tablo 12 - CD3+ CD56+ NKG2a+ hücre yüzdelinin 0., 3., 6. ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>CD3+CD56+ NKG2a+</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>(0,006)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–3</td>
<td>2,65(0,10–15,00)</td>
<td>2,20(0,80–8,20)</td>
<td>0,500</td>
</tr>
<tr>
<td></td>
<td>0–6</td>
<td>2,65(0,10–15,00)</td>
<td>1,15(0,30–3,80)</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>0–9</td>
<td>2,65(0,10–15,00)</td>
<td>0,90(0,10–11,80)</td>
<td>0,007</td>
</tr>
<tr>
<td></td>
<td>3–6</td>
<td>2,20(0,80–8,20)</td>
<td>1,15(0,30–3,80)</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>3–9</td>
<td>2,20(0,80–8,20)</td>
<td>0,90(0,10–11,80)</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>6–9</td>
<td>1,15(0,30–3,80)</td>
<td>0,90(0,10–11,80)</td>
<td>0,459</td>
</tr>
</tbody>
</table>

CD3+ parametrelerinde haftalar arasında değişiklikler olmasımıştır.

Tablo 13 - CD3+ hücre yüzdelinin 0, 3, 6 ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>CD3+</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–3</td>
<td>73,20(65,50–82,40)</td>
<td>76,20(48,20–82,00)</td>
<td>0,266</td>
</tr>
<tr>
<td></td>
<td>0–6</td>
<td>73,20(65,50–82,40)</td>
<td>74,35(62,40–85,90)</td>
<td>0,384</td>
</tr>
<tr>
<td></td>
<td>0–9</td>
<td>73,21(65,50–82,40)</td>
<td>74,00(63,00–81,50)</td>
<td>0,983</td>
</tr>
<tr>
<td></td>
<td>3–6</td>
<td>76,20(48,20–82,00)</td>
<td>74,35(62,40–85,90)</td>
<td>0,811</td>
</tr>
<tr>
<td></td>
<td>3–9</td>
<td>76,20(48,20–82,00)</td>
<td>74,00(63,00–81,50)</td>
<td>0,653</td>
</tr>
<tr>
<td></td>
<td>6–9</td>
<td>74,35(62,40–85,90)</td>
<td>74,00(63,00–81,50)</td>
<td>0,687</td>
</tr>
</tbody>
</table>

CD3+ CD56+ NKG2a+ parametrelerinde 6. ve 9. haftalarda 0. haftaya ve 9. haftada 3. haftaya göre anlamlı düşüşler görülmüştür.

Tablo 14 - CD3+CD4+ hücre yüzdelinin 0., 3, 6 ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>CD3+ CD4+</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>(0,284)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–3</td>
<td>42,08(32,70–54,40)</td>
<td>46,70(26,90–56,40)</td>
<td>0,016</td>
</tr>
<tr>
<td></td>
<td>0–6</td>
<td>42,08(32,70–54,40)</td>
<td>46,36(28,00–53,00)</td>
<td>0,102</td>
</tr>
<tr>
<td></td>
<td>0–9</td>
<td>42,08(32,70–54,40)</td>
<td>44,15(37,60–57,96)</td>
<td>0,107</td>
</tr>
<tr>
<td></td>
<td>3–6</td>
<td>46,70(26,90–56,40)</td>
<td>46,36(28,00–53,00)</td>
<td>0,327</td>
</tr>
<tr>
<td></td>
<td>3–9</td>
<td>46,70(26,90–56,40)</td>
<td>44,15(37,60–57,96)</td>
<td>0,107</td>
</tr>
<tr>
<td></td>
<td>6–9</td>
<td>44,36(28,00–53,00)</td>
<td>44,15(37,60–57,96)</td>
<td>0,828</td>
</tr>
</tbody>
</table>

CD3+ ve CD4+ parametrelerinde haftalar arasında değişiklikler olmasımıştır.
Tablo 15 - CD3+CD8+ hücre yüzdelerinin 0. 3. 6. ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>CD3+</th>
<th>CD8+</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>(0,003)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0–3</td>
<td>25,50(15,40–38,70)</td>
<td>24,30(14,90–42,30)</td>
<td>0,309</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0–6</td>
<td>25,50(15,40–38,70)</td>
<td>26,10(18,65–42,90)</td>
<td>0,031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0–9</td>
<td>25,50(15,40–38,70)</td>
<td>27,40(19,65–38,80)</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3–6</td>
<td>24,30(14,90–42,30)</td>
<td>26,10(18,65–42,90)</td>
<td>0,381</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3–9</td>
<td>24,30(14,90–42,30)</td>
<td>27,40(19,65–38,80)</td>
<td>0,016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6–9</td>
<td>26,10(18,65–42,90)</td>
<td>27,40(19,65–38,80)</td>
<td>0,163</td>
</tr>
</tbody>
</table>

CD3+ ve CD8+ parametrelerinde 9. haftada 0. haftaya göre anlamlı bir yükselme görülmüştür.

Tablo 16 - CD3-(negatif) CD19+ hücre yüzdelerinin 0. 3. 6. ve 9. haftalardaki dağılımı

<table>
<thead>
<tr>
<th>CD3-</th>
<th>CD19+</th>
<th>Hafta</th>
<th>Median (min-max)</th>
<th>Median (min-max)</th>
<th>(0,006)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0–3</td>
<td>6,40(3,30–29,00)</td>
<td>9,19(3,70–30,87)</td>
<td>0,006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0–6</td>
<td>6,40(3,30–29,00)</td>
<td>10,30(1,56–32,50)</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0–9</td>
<td>6,40(3,30–29,00)</td>
<td>9,20(3,40–20,00)</td>
<td>0,043</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3–6</td>
<td>9,19(3,70–30,87)</td>
<td>10,30(1,56–32,50)</td>
<td>0,435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3–9</td>
<td>9,19(3,70–30,87)</td>
<td>9,20(3,40–20,00)</td>
<td>0,360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6–9</td>
<td>10,30(1,56–32,50)</td>
<td>9,20(3,40–20,00)</td>
<td>0,170</td>
</tr>
</tbody>
</table>

CD3- ve CD19+ parametrelerinde 6. haftada 0. haftaya göre anlamlı bir artış görülmüştür.
38

5. TARTIŞMA

İlk kez ortaya çıktığı düşünilen Kuzey Kafkasya’dan, önce Karadeniz ve Hazar Denizi arasında yoğun olarak kullanılmakta olan kefirin yüzyıllarca Rus literatüründe faydalı etkileri olduğu düşünülelgemelmiş, rafine ürünlerle beslenilen özellikle Batı Avrupa ve Kuzey Amerika’ddaki insanlar arasında bu ürünleri tüketmeye bağlı olarak ortaya çıkan rahatsızlıklar ve doğal ürünleri kullanmaya dair yeni gelişen organizik gidalara eğitim neticesinde, bu fermente ürünlerle ait kabul edilebilir araştırmalarda hem invtro hem de nadir yapılan invivo insan çalışmalarında artış kaydedilmiştir.

Alvarez ve arkadaşları tarafından İspanya Madrit’tede 2003’te yapılan bir çalışmada sınav stresi altında dökumante edilen öğrencilerin bağışıklık sisteminin baskılanlığı gözlenmiştir (96). Bu çalışmada *Lactobacillus casei DN–114001* ilave edilmiş fermente sütlerin etkisiyle oluşturulmuş yoğurt kültürlerinin akademik sınav stresi altında öğrencilerin bağışıklık sistemi üzerindeki etkileri değerlendirilmiştir. Methods Üniversitesi’nde yapılan bu çalışmada öğrenciler, sınavdan 3 hafta öncesi ve aynı zamanda sınav periyodu boyunca olmak üzere 6 hafta süresince her gün bir bardak yeni sağılmış süt (kontrol grubu, n = 63) ve her gün 100 mililitre
porsiyonunda ferment edilmiş süt (tedavi grubu n=73) içenler olmak üzere iki gruba ayrılmışlardır.

Çalışma başında (Faz 0) ve çalışma sonunda (Faz1) olmak üzere kaygı ve immünolojik parametreler değerlendirilmiştir. Sonuçlar Faz 0 ve Faz1 arasındaki fark olarak bilgi şeklinde elde edilmiştir. Bu fark, Faz1 sonuçlarından Faz0 sonuçlarının çıkarılmasıyla elde edilmiştir ve bu da ‘Tedavi Etkisi’ olarak isimlendirilmiştir. Ortalama kaygı (+SE) bütün öğrenciler için yapılan 6 haftalık çalışma boyunca (p<0.05) 40.74 + veya – 2.50’den 61.19 + veya – 2.64’e doğru (yüzde oranlarında) belirgin olarak artmıştır. Bu artış tedavi ve kontrol gruplarında benzer şekilde olduğu için tedavi etkisinde bir değişiklik olmamıştır. Öte yandan, 6 haftalık çalışma boyunca, lenfositlerin mutlak sayılardında ortalama değişiklikler üzerinde önemli bir tedavi etkisi görülmüştür. Bu etki, kontrol grubunda düştüğü (-0.04 + 0.12 hücre x 10³/ mm³) ve tedavi grubunda artıştı (0.37 + veya- 0.11 hücre x 10³ mm³)

Aynı zamanda 6 haftalık çalışma boyunca CD56 hücrelerinin mutlak sayılardaki değişiklik olarak önemli bir tedavi etkisi de olmamıştır. CD56 hücrelerinin ortalama mutlak değeri kontrol grubunda (p<0.05) (-51.97 + veya- 21.33 hücre/mm³) düştükten, tedavi grubunda aynı kalmıştır. (17.29 + veya- 17.27 hücre/mm³)

Bu çalışma boyunca ortalama serum kortizol seviyesi kontrol (4.30 + veya- 0.98 nanogram/desilitre) ve tedavi gruplarında (1.75 + veya- 1.05 nanogram/desilitre) artmış iken her iki değer arasında (p=0.062) önemli bir tedavi etkisi değişikliği bulunmamıştır.

Böylece söylenebilir ki, Lactobacillus casei DN–14001 ilave edilmiş yoğurt kültürleriyle ferment edilmiş sütlar akademik sınav stresi altında şahsılarda CD56 belirtecine sahip hücreler ve lenfositlerin sayılardını düzenleyebilmiştir.

Pujol P. ve ark. nin 2000’de katıldıkları bu çalışmada Lactobacillus casei DN–114001 ve yoğurt kültürleri ile ferment edilmiş süt ürünlerinin eklediği diyetlerle beslenen bu öğrencilerin 6 haftalık bu diyet döneminde ardından periferik kan NK hücrelerinin düşüşünün önlediği saptanmıştır (97).

63 ve 84 yaşları arasındaki 30 sağlıklı yaşlı gönlününün katıldığı bir çalışmada, bu bireylerde T (CD3+), yardımcı T (CD4+), doğal öldürücü (CD3-/CD56+) hücrelerde (toplam lenfositlerin yüzdeleri olarak) artışlar rastlanmıştır. (98). Bizim çalışmamızda T(3+CD+) ve T yardımcı (CD4+) belirteçlerinde, yedi günlük testte ve 2’li haftalar arasında sadece probiotik alan grupta sitotoksik lenfositlerin (CD3+CD16+CD56+) belirli olarak arttığı gözlenmiştir. (100).

Bu çalışmada B. lactis HN019 tüketiminin hücresel bağışıklık fonksiyonlarını, lökosit fagositozunu ve tümörisidal aktiviteyi artırdığı gözlenmiştir.
Tanımlanmış probiyotik suşları tüketen yetişkinlerde doğal hücresel bağışıklığın arttığı bulunmuştur (102–103).

Bu çalışmaya göre toplamda sistemik ve mukozal bağışıklık kompartmanlarında lenfositlerin dağılımları arasında 2 haftalık konvansiyonel ve probiyotik içerikli yoğurtların tüketilmesinden sonra çok fazla bir etki değişikliğine rastlanmamıştır.

Bizim planladığımız 9 haftalık kefir tüketim evreleri dışında, sağlıklı insanlar üzerinde lenfosit subgruplarının araştırıldığı çalışmamızın ardından CD3+ parametrelerinde bir değişiklik olmamış, CD3+ CD4+ ölçümlerinde istatistiksel olarak anlamlı bir değişikliğe rastlanmamıştır. CD3+CD8+ sitotoksik hücre yüzey belirteçlerine yönelik yaptığımız çalışmada çalışma başındaki taban ölçümlerine göre 9. hafta çalışma sonu değerlerinde istatistiksel olarak anlamlı hafif bir yükselme olmuştur. Yani, probiyotik tüketimi sonunda hafif de olsa bir miktar sitotoksik hücre yanıtlarında bir artış görülebilmiş ve sitotoksik aktivite artmıştır.
Ayrıca CD19 yüzey belirteçlerinde 0. haftaya göre 6. hafta sonunda istatistiksel olarak anlamlı bir artış rastlanmıştır, yani humoral bağışıklığa etki yönünden olumlu bir kılparadadan tespit edilmiştir.

Amaç, anoreksia nevroza hastalarında yoğurdu belirgin bağışıklık parametrelerini değişip değişmediği olan bir çalışmada CD4+/CD8+ oranı araştırıldığında kontrol grubunda yoğurta tedavi edilmiş istenen anoreksia nervozal hastalara göre önemli bir düşüş görülmiştir (105). CD8+ alt grup seviyesi yoğurt tüketmeyen sağlıklı kontrol grubunda ve yoğurt tüketmeyen anoreksia nervozal kontrol grubunda belirgin bir şekilde yükselmiştir. Lökosit ve lenfosit sayıları bütün çalışma boyunca anoreksia nervozal hastalarda sağlıklı adolesanlara göre düşük bulunmuştur. Araştırma daha da derinleştirildiğinde 10 haftalık sütlardan sonra sağlıklı adolesan ve yoğurta beslenen anoreksia nervozal hasta grubunda CD8+ T sitotoksik hücrelerinde önemli bir artış rastlanmıştır. Yapılan çalışma aynı zamanda göstermektedir ki, 10 hafta sütle beslenen anoreksia nervozal hastalarda CD4+/CD8+ oranı belirgin bir şekilde düşmüştür.

Yoğurdu anoreksia nervozal hastalarda CD4+/CD8+ oranında gözlenen düşüşü önlemede güzel bir alternatif olduğu gözlenmiştir. Öyle ki, insanlarda CD4/CD8+ oranının 1,5’ten düşük olması bağışıklığın baskılanması ile koreledir (106).

Yapılan bu çalışmada, stresli ortamlarda probiotik aldığı zaman CD8+ T hücre saylarının düştüğü gözlenmiştir. Böyle bir durumda CD56 hücre sayları aynı kalmasıdır. CD 56’lı hücrelerin aynı kalmasını sebebi doğal öldürücü hücrelerin aktivasyonudur. Doğal öldürücü hücre yüzey inhibitör reseptör olan NKG2a ve CD56, lenfositler üzerindeki TH1 yola aktive edildiği, TH2 yolağı beraber aktive eder.NKG2a sitotoksik hücreler üzerinde ekspresse olmuşken, aktive yardımcı T hücreler üzerinde de bulunmaktadır (104). TH2 yolağı aktive edildiği zaman, inhibitör etki gösterir ve NKG2a reseptörünü ve CD56 belirteçini aktif hale getirir. TH2 yolağı ile TH1’in proinflamatuar etkileri regüle edilmiş olur. Öyle ki, IL–10 ve transforming growth factor-beta aktive edilmiş olur.

TH1 yolağı ise NKG2c reseptörü yoluyla aktive edilir. Bu durumda CD56 seviyesinde artma olmaz (108).

Bizim çalışmamızda bulunan pozitif değerlerin dışında, anlamsız istatistiksel analizlerin sebebi uygulama süresi, alınan probiotik dozu, kefir hazırlanak için kullanılan sütün ıssi, sağladığı hayvanların sağlıklı durumu, besleniği ortam ve probiotik suşların genel özellikleri olabilir. Önemli olan ortaya çıktığı bölgeden dünyaya yayılan bu fermente süt ürunünün olmum ve olumsuz yönlerinin iyi bir şekilde araştırılması ve halilazarda elimizde bulunan bu değerler toplum sağlığına olan katkılarının artırılmasıdır.

akım sitometri ile yüzdeleinine ve aktivitelerine bakıldığında CD3+ CD8+ hücrelerde 0. ve 9. haftalar arasında anlamlı artma, CD3(-) CD19+ hücrelerde 0. hafta ile karşılaştırıldığında 3. ve 6. haftalar arasında anlamlı artma kaydedilmiştir. NK-T hücreleri üzerinde CD 158 ekspresyonunda anlamlı azalma saptanırken NK hücreleri üzerinde CD158 kespresyonunda bir fark saptanmıştır. NK ve NK-T hücreleri üzerinde NKG2a ekspresyonunda 0. hafta ile karşılaştırıldığında 6. ve 9. haftalarda anlamlı bir düşme saptanmıştır.

6. ÖZET

Bu çalışmada kefir kullanımı insanların bağışıklık sistem parametreleri üzerinde in vivo etkilerini araştırmayı planladık.

Olası pozitif ve negatif etkilerinin açığa çıkması ile kefir kullanımının hem daha güvenli hem de daha yaygın olarak kullanılması suretiyle insan sağlığına pozitif yönde katkı bulunması nihai hedeflerimizdendir.

Çalışmamız prospektif ve randomize olarak planlanmıştır. Araştırma Süleyman Demirel Üniversitesi'nde çalışan 18 sağlıklı gönüllü katılmıştır. Kefir verilmeden önce gönüllülerden 2 hafta fermente ürünlerden yoksun diyet almaları, bu yoksunluk süresi sonrasında toplam 6 hafta, hafta içi günleri 200 mililitre kefir verilmiştir. Laboratuvar testleri için, kefir verilmeden hemen önce (0. hafta) kefir başlandıktan sonra 3. ve 6. haftalarda ve kefir verilmesi kesildikten 3 hafta sonra (9. hafta) kan ve serum örnekleri toplanmıştır. Akım sitometrede boyasız olarak granülosit, monosit ve lenfosit oranları belirlenmiş, lenfosit kapsından monoklonal antikorlarla boyandıktan sonra mononükleer hücre alt gruplarının lenfosite göre yüzdeleri (CD3, CD4, CD8, CD19, CD56, CD158a, NKG2a ve NKG2c) ölçülmüştür.

Lenfosit alt gruplarının akım sitometri ile yüzdelерine ve aktivitelerine bakıldığında CD3+CD8+ hücrelerde 0. ve 9. haftalar arasında artma, CD3(-)CD19+ hücrelerde 0. hafta ile karşılaştırıldığında 3. ve 6. haftalarda artma kaydedilmiştir. NK-T hücreleri üzerinde CD158 ekspresyonunda anlamlı azalma saptanırken, NK hücreleri üzerinde CD158 koeekspressyonunda bir fark saptanmamıştır. NK ve NK-T hücreleri üzerinde NKG2a ekspresyonunda 0. hafta ile karşılaştırıldığında 6. ve 9. haftalarda düşme saptanmıştır.

Bu bulgular ışığında kefir lökositler ve efektör hücreler olan nötrofiller üzerinde azalma ancak hem Th1 yanıtın efektör hücresi olan CD8+ hücrelerde hem de Th2 yanıtın efektör hücresi olan CD19+ hücrelerde artışa neden olmuştur.
Böylece immün sistemin dışarıdan gelecek antijene karşı teyakkuz hale gelmesi ancak bu yanıtın da kontrollü olabilmesi için nötrofil gibi efektör hücrelerinde saylarının azaldığı gözlenmektedir. Kefir alımı sonucu NK-T hücresinin regülasyonunda görev yapan CD158 molekülünün ekspresyonunun azalmış olması bu hücrelerin abartılı yanıt vermelerini engellemektedir. NK hücrelerinin Th2 yanıtını artırıran ve Th1 yanıtını azaltan NKG2a ekspresyonunun azalması kefirin alerjik yanıtta abartılı çalışan Th2 yanıtının regülasyonunda önemli rol oynayabileceği düşünülmektedir.

Anahtar Kelimeler: Kefir, probiyotik, İmmünomodülsyon.
7. ABSTRACT

The aim of this study is to investigate the in vivo effects of kefir consumption in humans on the parameters of the immune system.

Our aim is to obtain more reliable and widespread consumption of kefir to maintain a positive effect on human health by revealing the possible positive and negative effects of kefir.

Our study has been planned as prospective and randomized study. Eighteen healthy volunteers working in Süleyman Demirel University, have participated in our study. The volunteers are initially asked to pursue a diet lacking fermented food for 2 weeks prior to kefir intake. Following this term of abstinence, the volunteers have been supplemented with 200 ml of kefir for next 6 weeks at the weekdays. Blood and serum samples have been collected from the participants for laboratory tests just before the intake of kefir (week 0) and the 3rd and 6th weeks of the intake and 3 weeks later after the termination of intake of kefir (9th week). Granulocyte, monocyte and lymphocyte percentages to total white blood cells have been detected through forward and side scatter graphics on flow cytometer in unstained state; the percentages of mononuclear cellular subgroup in respect to lymphocyte (CD3, CD4, CD8, CD19, CD56, CD158a, NKG2a, NKG2c) have been measured after they have been stained with monoclonal antibodies through lymphocyte gate.

In the group supplemented with kefir, the leukocyte rate has decreased and the rate of lymphocyte has risen in the 6th and 9th weeks and the rate of monocyte risen in the 3rd and 9th weeks compared to the week 0.

When the rates and activities of lymphocyte subgroups have been monitored through flow cytometer, a rise in CD3+ CD8+ cells between the week 0 and the 9th week; a rise in CD3(-) CD19+ cells in the 3rd and 6th weeks compared to the week 0 has been detected. A decrease has been detected on NK-T cells during CD 158 expression while no difference has been observed on NK cells during CD158 expression. A significant decrease has been detected on NK and NK-T cells during NKG2a expression in the 6th and 9th weeks compared to the week 0.
In the light of these evidences, the kefir has diminished the leukocytes and neutrophils which assume an effector nature; however, some rises have been detected in CD8+ cells, which are the effector cells of Th1 response, as well as in CD19+ cells, which are the effector cells of Th2 response. Thus, it has been detected that the immune system gets on alert against foreign antigens and that the rates of effector cells like neutrophil has diminished to establish a regulated response.

The diminished expression of CD158 which is a key factor in NK-T cell regulation as a result of kefir consumption prevents the exaggerated response of these cells.

It has been considered that the decrease in NKG2a expression, which deepens Th2 response and diminishes Th1 response of NK cells, acts a crucial role in the regulation of Th2 response by kefir, which is important in regulation of allergic immune responses.

Key Words: Kefir, Probiotic, Immunomodulation.
8. KAYNAKLAR

Abbas AK, Lichtman AH. Temel İmmünoloji. İstanbul: İstanbul Tıp Kitabevi 2007; 230–61.

Kuby H. Overview of the İmune system and cell and organs of the immune system. İn Immunology. 3nd Ed. W.H. Freeman and Company, USA. 1997: 1–83.

